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Abstract—The elastic fields associated with a screw dislocation at {x*,0) in an infinite inhomogeneous elastic
medium of an arbitrarily varying shear modulus u(x) are obtained by Fourier analysis for the case in which u(x)
and its derivatives are everywhere continuous and bounded. Using the elastic energy-momentum tensor, the self
glide force on the dislocation is calculated. The resulting expression for self-force contains a term
—(b?/4n)(dp/dx). In 1/|x|e, where k = (1/u(x*))(dp/dx),. and ¢ is the dislocation core radius. Thus x may be
viewed as a reciprocal “characteristic length” which is introduced by the inhomogeneity. Also included is an
extension of the results to include the effects of a free surface at x = 0.

1. INTRODUCTION

VARIOUS solutions exist in the literature for the states of stress and strain associated with
isolated straight dislocation lines in composite media whose elastic constants are only
piecewise continuous, ie. the elastic moduli suffer abrupt discontinuities at internal
surfaces, but are otherwise continuous. These solutions have been reviewed in detail by
Dundurs [1]. In general this type of inhomogeneity induces image forces which either
attract the dislocation toward or repel it away from the surface of modulus discontinuity ;
the image forces become infinite as the dislocation approaches the surface of discontinuity.

By appropriately linearly superimposing the relevant solutions for isolated dislocations,
detailed solutions for the elastic stress states about cracks in such composite materials
have been obtained [2-5]. When the leading edge of the crack just reaches the surface of
modulus discontinuity, the crack tip stress singularity changes discontinuously [2, 3, 6, 7];
this result severely limits the utility of these continuum models for formulating criteria
for crack initiation and propagation in composite or multi-phase materials.

Of course, real materials do not exhibit abrupt discontinuities in elastic constants; the
interfaces between adjacent phases of multi-component media are diffuse, so that, within
the limits of approximation afforded by the continuum theory of elasticity, the elastic
moduli of such media will vary continuously across the diffuse zone separating adjacent
phases. Continuously varying elastic constants would exist in the presence of continuous
compositional variations in a composite medium. Thus, one might characterize an alloy
which has undergone spinodal decomposition as a material whose elastic moduli exhibit
periodic fluctuations about some uniform value. Similarly, an alloy containing a random
dispersion of precipitates or inclusions could be modelled by considering that the elastic
moduli exhibit more or less random fluctuations.

The elastic fields of straight dislocations in media whose moduli are continuous func-
tions of position have not been well-investigated. Therefore, we shall examine the simplest
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of such problems which one could pose, namely to solve for the elastic state of internal
stress due to a screw dislocation in a locally isotropic medium whose shear modulus varies
continuously with respect to one spatial coordinate which is perpendicular to the dislocation
line. For present purposes we further restrict the derivatives of the shear modulus to be
everywhere continuous and bounded; the restriction on derivative continuity may be
easily removed by a straightforward extension of the technique to be presented [8]. The
displacement and stress fields of the screw may be constructed in a rather simple fashion
by Fourier analysis, and the result is extended to incorporate the case of a screw dislocation
situated in a semi-infinite inhomogeneous medium.

Unlike the situation for an abrupt modulus discontinuity, the self-force on the disloca-
tion in our inhomogeneous medium is due to (1) “‘image-type forces” which are everywhere
finite and (2) a term which is dependent, though rather insensitively, on the dimension of
the dislocation core. The interaction force between a free surface and the dislocation will
be obtained in a straightforward fashion.

2. THE ELASTIC FIELDS

Consider a locally isotropic elastic medium, infinite in extent, whose shear modulus
u(x) is given by a single function of position on — oo < x < oo (Fig. 1). Elastic stability
requires that u(x) > 0 and we further assume that g and d"p/dx" are everywhere continuous
and bounded. Let a right-hand screw dislocation be situated at (x*, 0) (Fig. 1); such a
dislocated state would be created by cutting the unstrained medium along y = 0 from
x = x*to x — o0, displacing the bottom of the cut relative to the top of the cut by a constant
amount, b, in the positive z-direction and then welding the cut surfaces together. Alterna-
tively, one could make a cut from x = x* to x > — o0 and displace the top of the cut
relative to the bottom by an amount b in the z-direction. b is the magnitude of the Burgers’
vector.

()

(x{0)

FiG. 1. A screw dislocation ($) at (x*, 0) in an elastic medium with varying shear modulus p(x).
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If the state of internal stress is assumed to be one of pure antiplane strain, the only
non-vanishing elastic fields are the z-component of displacement (w) and the stresses
T, = M(0w/0x) and 1, = u(0w/dy). As we are assuming linear small-strain elasticity, when
1(x) is continuous and no body forces are present, w(x, y) is determined from:

0

2
o ugw) g—‘f =0 (elastic equilibrium) (1)
ow ow . 2 2
-0;,5 everywhere continuous and —0 as (x —x*)*+y* - «© (2)
lim {w(x, —|eg))—w(x,|eg)} = b, x > x*
lim {w(x, —e))—w(x. e)) o
=0, x<x*
Writing w = W(x) sin Ay, (1) becomes
—( dW) —A2uWw =0. 4)
dx

Since y(x) > 0 and both u and d"u/dx" are continuous and bounded, (4) has two linearly
independent solutions f;(x; A) and f,(x; A) which are regular and bounded on (0, c0) and
(— 00, 0), respectively [9]. It is not difficult to show that
)
ux)’

where A is the Wronskian of (f;, f,) and a(4) is always positive. Furthermore, for large
values of 4, the following asymptotic expansions are valid [9]:

A(x) = (5)

—Ax © 1 n
i)~ o )]{ +3 (ﬂ) r,,(x)} (6a)
e}.x 0 1 n
Salxs A) ~ m{l +"§,l ﬁ) Sn(x)} (6b)
a(d) ~ 21{1 +0rder(%)}. (6¢)

When the medium is homogeneous, u(x) = po and f; , = e¥**/\/py with ofd) = 24,
provided 1 # 0. For A =0, f; = 1, f, = [§[ds/u(s)] and «(0) = 1. A solution of (1) is
obtained by an integral superposition over all positive values of 4, i.e.

Jm B(A) f1.2(x; A)sin Ay dA 7
0

where the choice of f; or f, is determined by requiring convergence of the integral in
accordance with (6a) and (6b). In addition any function w = const. satisfies (1) and (2).

We now construct the solution for the screw dislocation at (x*,0) in the following
fashion. For x < x*:

Wit ) = o {n+2u(x*) f Al 2{2(" A sin 2y dl}. ®)
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For x > x*:
b ® fi(x; A)f5(x*; A) sin 4
W6 y) = ZHe) fo - i{i)(x PRS0 >0
©
b7 Sl A f (% A) sin Ay
—b+;ﬂ(x)f ) 2L (v <)

By fi(x*; A) we mean (d/dx*) fi(x*; 4) or, equivalently, {(df,(x; A))/dx}, .. The integrals
in (8) and (9) converge, since (6a) and (6b) guarantee that the integrands behave as e ~4*~*"l
as A — oo.

The dislocation condition (3) is seen to be trivially satisfied and (0w/0x), (0w/dy) are
obviously continuous across y = 0, so that we need only show that w, (0w/0x), (0w/dy) are
continuous across x = x*. Equivalently, we may show that the discontinuity in these
quantities is zero across x*. dw/0x is continuous at x = x* by virtue of the presence of
the common factor f(x*; 1) f5(x*; 4) in the integrands for x > x* and x < x*. Also, since

oA
M) = S Dt )= s D 2) = (10)
fory #0
. b{ [ sinAdy n
lim {w(x*+e¢, y)—w(x*—¢, y)} = — f di——sgn(y);, (11)
£~ 0 T 0 ). 2
which vanishes due to the identity
“sin Ly T
J; ] di = Esgn(y). (12)
Furthermore,
ow ow b (®
lim — = —f cos Ay di
‘"’0{(6y)x*+sy (6y)x‘—£,y} TJo Y (13)
= bd(y),

which vanishes except at y = 0 [)(y) is the Dirac delta function]. Thus (8) and (9) satisfy
(1)-(3) except at (x*, 0) where the fields are singular.
The dislocation stress field is given by:

x < x*:

_ HX)ux*)b J = fix*; ll()if)” 2(x;4) Sinliy di
o d

_ u(X>';(x*)b : B ;aZ{Z(X; Y cos 1y a

Xz

(14)

x > x*:

_ Hop(x)b r fix; A:(f;';(x* A)sindy g,

*)b A fH(x*; A ’
(x)u(x)f Silx; )J;z)x )coslydll

X2z

(15)
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Thus, the elasticity problem has been formally solved once the function u(x) is specified
and f, and f, have been determined. For u(x) = y,, a constant, the homogeneous solution

_ y A
- 1
w —ﬂtan X—x*
Hob y
SR o T AR 16
R 2n (x—x*)2+)? (16)
fHob  x—x*
T, = "
221 (x—x*)* 4 y?

is recovered by virtue of the relations

fw g Axml sin 1y di =tan~1—¥ _
0 A

|x —x*|
° —Alx—x*| o3 Y
JL) (5] A ISll’l /ly di = m (17)
0 *
—Alx— x*¥| — X—X
L e cos Ay di 1y

where the principle branch of 6 = tan™!(y/|x — x*|) is taken as —(n/2) < 6 < n/2.
Using the fact that near A = 0

filxs A) ~ 1+(:1rder(i) .
* ds
Salx;4) ~ fo @+order(l),

the results of Erdelyi {9] and Lighthill [10] show that, for fixed x, as y — oo, the asymptotic
forms of (14) and (15) are

Tez ™ 7 Tyz ~ 3 (19)

just as in a homogeneous medium. Roughly speaking, the stresses about a screw dis-
location in an inhomogeneous medium decay inversely with distance from (x*,0) as
(x—x*)?%+y? - o0.

3. THE CASE OF A FREE SURFACE

When the screw dislocation lies at (x*, 0) in a semi-infinite medium, (x, x* > 0), one
must require that the surface x = 0 be traction-free, i.e. u(0)(0w/dx), -, = 0. This is accom-
plished by simply superimposing a solution which nullifies the stress (z,,), - given by the
first of equations (14) with x set equal to zero. One may easily verify that the superimposed
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solution must be:

m_ D 1(x; i) S10c*; ) f5(0; 4) sin Ay

v f 110 () PR

m _u(X)u(X*)b °°f 1(x; A) f1x*; A)f5(0; 4) sin Ay

T = - o 00 ) - da (20)
i __ HXIROb (7 fi(x34) f1(x*; 4)f5(0;4)

Tyz n o FH0:D) ) cos Ayda

f1(0; ) means {(d/dx)fi(x;4)},-o. The superscript im denotes an ‘“image solution”,
since, in a certain sense, (20) is an elastic field related to that of a virtual left-hand screw
dislocation positioned at (—x*,0). As A — oo the integrands in (20) behave as ¢ *>**"
[see (6)]; this type behavior characterizes a screw dislocation at (— x*, 0) [equation (17)].
The image solution (20) has no singularities or discontinuities in x > 0, so that the elastic
fields for the free surface problem are given by those for the infinite medium plus (20).

4. FORCE ON THE DISLOCATION

The self-force in the x-direction per unit length acting upon the dislocation line may be
calculated by either (a) using the prescription involving the elastic energy-momentum
tensor based upon the classic work of Eshelby [11, 12] or (b) calculating E, the total energy
(strain energy in this case) and evaluating — 0E/0x*. The latter technique is more tedious
and shall not be dealt with here. Eshelby’s energy-momentum tensor prescription shows
that the self-force on any elastic singularity or inhomogeneity is determined solely by the
fields local to the singularity. In Appendix B we show that the self glide force on the dis-
location, F,, may be expressed as

b
F. = 5{ryz(x* +¢,0)+1,.(x* —¢,0)}, (21)

where ¢ is essentially the radius of the dislocation core, a result which has been used
previously by Brown [13]. Using equations (14) and (15), (21) becomes

p2(xh)p? (o im {fix*+&; A fox*; D+ S1(x*; ) fHlx* 25 D)}

Fo="—% L i 0 di. (2

We cannot take the limit ¢ — 0 in (22), for then the integral would diverge since

tim SC {0 D D) ~ )+order(j) (23)

so that the integrand in (22) would behave as A~ ' as 4 — o0. By adding and subtracting
the term

e—ls# ,(_iﬁ _ __i L e_ls
p(x*)\dx/ o dx* | p(x*)
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to the numerator of the integrand in (22) and then examining the limit as ¢ — 0, F, can be
written as

F, da

x 2n

_ weMp? j‘” (d/dx*) { f1(x* 5 ) fo(x* 5 4) — [1/u(x*)]}
0 a(4)

2 W 4~ AE
—b—(d—“) lim f ©__di
2n\dx| wev0 o afd)
Now the first integral is independent of ¢ and converges to a finite value since the integrand
is of order 472 as 4 — oo; this term is the counterpart of the “usual image force” one
obtains in the case of abrupt modulus discontinuities. The second integral diverges as
In¢ as ¢ — 0, since its behavior for large A is like that of an exponential integral; at any
rate this term depends only upon (du/dx).., the modulus gradient at the dislocation and e,
the dislocation core radius. An analysis of equation (1) for (x — x*)2 + y? < £ shows that the
dominant contribution to the force from the second integral in (24) is (see Appendices)

(24)

b2 {dpu 1
Feore — (&% In— 2
* 47r(dx)x* nlxls’ @3)
where
1 [du
= —— . 2
* N(X*) dx)x=x* ( 6)

Implicit in the derivation of (25) is the assumption that
|xle « 1, (27)

which precludes the existence of large fluctuations in In{u(x)/u(x*)} over the dimensions
of the dislocation core.
Finally, to terms of order ¢ and ¢ In ¢, the self-glide force is given by

pA(x*)b? j (/) [ DS A~ /]
2 Jo ()

F™ vanishes in a homogeneous medium, as does the remaining term in (28) since
Si(x*; ) fo(x*; A) = Lu(x*); F' is always in the direction of decreasing modulus and
may be comparable with the last term in (28) when the screw is situated in a region of
large modulus gradient. Using (20) and (21), one notes that the presence of a free surface
at x = 0 induces an additional or interaction glide force per unit length given by

IR [ f A S 03 )
Rr= S Py ©

Fo = FP™°+ (28)

A. (29)

5. CONCLUSIONS

The present results may be extended to allow for discontinuities in du/dx and the screw
dislocation near a diffuse grain boundary (approximated by a linear modulus variation)
may be studied in detail [8]. Using (14) and (15) as a basis, it should now be possible to
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study elastic longitudinal shear cracks in inhomogeneous media via the technique of
continuously distributed dislocations.

It should be remarked that Wu and Nowinski [14] have studied a particular case of
the edge dislocation in an inhomogeneous medium. They were unable to construct a
singular Volterra edge (constant Burgers’ vector) and dealt instead with a Mann-—
Somigliana [15] dislocation by allowing stress components which did not contribute to
tractions across the slip plane to be multi-valued. As we have shown, when u = p(x), it is
always possible to construct a Volterra screw dislocation. This difference may be due to
the difference in orientation of the Burgers’ vector relative to the direction of modulus
variation in the two problems.
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APPENDIX A

Assuming that over the core of the dislocation {r? = (x—x*)*+y? < &2} the shear
modulus u(x) is given by

- * x—x* d_“ A
Hlx) = e ){1+ e s (A1)
which is valid provided that ¢ is such that
e |[d
e (ﬁ) «1, (A2)
equation (1) may be written as
inf ¢
V2w+x{%—v:cos9—s—n:—~ 5%} =0, r<e (A3)
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where (r, ) are polar coordinates about (x*, 0) and

1 du
K= M a)x=x*. (A4)

The solution to (A3) satisfying the dislocation condition (3) is

w= Zi {0 +4xr sin 0 In|x|r —3{(xr)* sin 20 In|x|r]} + W, (AS)
n

where W and éw/dx, dw/dy are non-singular at (x*, 0); w is similar to the image displacement
field in cases in which one allows for an abrupt modulus discontinuity. To terms of order
kr In|k|r, for r < ¢, the stresses associated with (AS) are

U(x*)b sin 0
Txz = — Txz
2n r

_ x*)bfcosf 1 .
Ty, = o . +2x1n|x|r +1,,

A

(A6)

where 7, and £,, are non-singular at (x*, 0).

APPENDIX B

In the present problem Eshelby’s energy-momentum tensor prescription [11, 12] for
the self-glide force per unit length on the dislocation reduces to

2n ;|
F, = gf {U cos 6 —(t,, cos 0+, sin 0)%} do, (B1)
] r=eg¢
where U is the elastic strain energy density, i.e.
U= 2 +1%). B2
2/1()6) {sz + Tyz ( )

Strictly speaking (B1) represents the x-component of force on both the dislocations and
the inhomogeneities inside the circle r = ¢, but as ¢ — 0 the amount of inhomogeneity in
r < & approaches zero, so that we may consider F, as a force acting solely upon the dis-
location.
Using (A6) in (B1) we can write each field as
TXZ = ng+fxz
T, =T+ %,
ow 0w’ N ow
dx  Ox Ox
and the *“~ -quantities” may be replaced by the average of their values at (x* —¢, 0) and

(x* 4+ ¢,0) and taken outside the integral. Direct integration of the resulting expression for
(B1) yields

(B3)

b
F, = 2 {T,0c* +&,0)+7,(x* —¢,0)}, (B4)
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where

uxp 1

2 x—x* (B3)

Z,.(x,0) = 1,,(x, 0)—

Le. 7,, is that part of the total stress component 7,, which excludes the stress due to the
displacement b8/27. Since

p(x*)b 1
2n X—x* e 1x—x*

we may replace T,, in (B4) by 7, and obtain equation (21). One notes that (B6) merely
restates the well-known result that the self-force on a screw dislocation in an infinite
homogeneous medium is zero. Using (A6), excluding the term £, which is virtually in-
dependent of ¢, yields equation (25) for F;°'. The last term in (28) is essentially £,, evaluated
at (x*,0).

} =0, (B6)
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AbcTpakT—C MOMOLLIbIO aHanu3la ¢ypbe, MOAy4yaloTcs yOpyrue MoJis, CBA3aHHbie ¢ BUHTOBOM OMCIIOKa-
uuei ang (x*, 0) B 6ecKOHEYHOH, HEOAHOPOANOH YNpYro# cpeae, ¢ MPOU3BOJIBHO H3MEHAIOLLIMMCA MOOEsIeEM
capura u(x), Ans cjaydasi, B KOTOPOM u(x) u €ro TIPOU3BOAHDIE ABJISIOTCSA BE3I€ HENPEPBIBHBIMH M OTPaH-
wueHHbIMH. MCnonp3ys TEH30p YNpyro# IHEPTHY U KOJUYECTBA NBUKEHMS, ONPEJIEIACTCA CHIIA CAMOCKO-
mkennsi. CyMMapHOe BbIpameHve st COOCTBEHHOMN CHIIbI UMeeT 4JieH

h? (dx) In 1 e k I (dx)
hr \dx/vx  Jk|€ & w(x*) \dx/ x»
1 € 0003HavYaeT paauyc Aapa auciokaluu. 3areM, K MOXHO paccMaTpuBaTh Kak OOpPaTHYIO BeJTMYMHY

“IMHBL XapPAKTEPHCTHKK'', BbI3BAHHOW HeoaHopomHocThio. Kpome Ttoro, mpusoautcs obobuiewne
Pe3yNIbTATOB, C LEeabto yuéTa 3hdekTor ans cBoGoaHON noBepxHocTH st x = 0.



